wANer Y
University of Tripoli
Faculty of Engineering

Department of Computer Engineering

A graduation project submitted in partial fulfilment of requirements for the degree of Bachelor in
Computer Engineering

Design and Implementation of an Alternative
Microprocessor Bus Architecture for FPGA-Based
Imbedded Systems

By:

Jumanah Abdulhadi Mansur Esra Abdalraof Tellisi

Supervised By:

Dr. Mohamed Muftah Eljhani

Spring 2023



University of Tripoli
Faculty of Engineering

Department of Computer Engineering

A graduation project submitted in partial fulfilment of requirements for the degree of Bachelor in

Computer Engineering

Design and Implementation of an Alternative
Microprocessor Bus Architecture for FPGA-Based

Imbedded Systems
By:
Jumanah Abdulhadi Mansur Esra Abdalraof Tellisi
Supervisor Signature Date

Dr. Mohamed Muftah Eljhani

Examiners

1. Dr. Ashoor Emhemed Alsellami

2. Dr. Abdoulmenim Ahmed Bilh




University of Tripoli
Faculty of Engineering

Department of Computer Engineering

Intellectual Property Rights Identification Form for Projects and
Scientific Research

This form must be read and signed by students working on graduation projects, master's theses
or any other research activities conducted at University of Tripoli / Faculty of Engineering /
Department of Computer Engineering.

Intellectual property rights for projects and research activities and their results (such as
graduation projects, master's theses, patents and any marketable research product) belong to
the University of Tripoli/Department of Computer Engineering. These rights are subject to the
laws, regulations and instructions of the University relating to intellectual property and patents.

I agree (Student’s Name):

Student’s ID:

As a condition of my participation in the graduation project entitled:

All intellectual property rights of the above-mentioned project or scientific research shall be
attributable to the University of Tripoli/Department of Computer Engineering This requires
me to inform the competent authority of the University of any invention or discovery that may
result from such research and to be fully confidential therein and to work through the
University to obtain the patent that may result from such research. | am also committed to
placing the name of Tripoli University/Department of Computer Engineering and the names
of all researchers involved in the research on any scientific bulletin for full research or its
results, including publication of graduation projects, master's theses, doctorates, publication in
journals, scientific conferences in general and posting on websites. | must adhere to the
principles of copyright approved by the University of Tripoli/Department of Computer
Engineering.

Student’s SigNature: =============mmmomm oo
DAE: === -




University of Tripoli
Faculty of Engineering

Department of Computer Engineering

Plagiarism Declaration

I (Student’s Name):

Student’s ID:

Hereby declare that | am the sole author of the graduation project entitled:

And that neither any part of the thesis nor the whole of the thesis has been submitted to any
University or Institution for obtaining any degree / diploma / academic award.

This project was written by me and in my own words, except for quotations from published
and unpublished sources, which are clearly indicated and acknowledged as such. | am
conscious that the incorporation of material from other works or a paraphrase of such material
without acknowledgement will be treated as plagiarism, subject to the custom and usage of the
subject, according to the University Regulations on Conduct of Examinations.

I shall be solely responsible for any dispute or plagiarism issue arising out of the graduation
project.

DAtE: ===



University of Tripoli
Faculty of Engineering

Department of Computer Engineering

Intellectual Property Rights Identification Form for Projects and
Scientific Research

This form must be read and signed by students working on graduation projects, master's theses
or any other research activities conducted at University of Tripoli / Faculty of Engineering /
Department of Computer Engineering.

Intellectual property rights for projects and research activities and their results (such as
graduation projects, master's theses, patents and any marketable research product) belong to
the University of Tripoli/Department of Computer Engineering. These rights are subject to the
laws, regulations and instructions of the University relating to intellectual property and patents.

I agree (Student’s Name):

Student’s ID:

As a condition of my participation in the graduation project entitled:

All intellectual property rights of the above-mentioned project or scientific research shall be
attributable to the University of Tripoli/Department of Computer Engineering This requires
me to inform the competent authority of the University of any invention or discovery that may
result from such research and to be fully confidential therein and to work through the
University to obtain the patent that may result from such research. | am also committed to
placing the name of Tripoli University/Department of Computer Engineering and the names
of all researchers involved in the research on any scientific bulletin for full research or its
results, including publication of graduation projects, master's theses, doctorates, publication in
journals, scientific conferences in general and posting on websites. | must adhere to the
principles of copyright approved by the University of Tripoli/Department of Computer
Engineering.

Student’s SigNature: =============mmmomm oo
DAE: === -




University of Tripoli
Faculty of Engineering

Department of Computer Engineering

Plagiarism Declaration

I (Student’s Name):

Student’s ID:

Hereby declare that | am the sole author of the graduation project entitled:

And that neither any part of the thesis nor the whole of the thesis has been submitted to any
University or Institution for obtaining any degree / diploma / academic award.

This project was written by me and in my own words, except for quotations from published
and unpublished sources, which are clearly indicated and acknowledged as such. | am
conscious that the incorporation of material from other works or a paraphrase of such material
without acknowledgement will be treated as plagiarism, subject to the custom and usage of the
subject, according to the University Regulations on Conduct of Examinations.

I shall be solely responsible for any dispute or plagiarism issue arising out of the graduation
project.

DAtE: ===

\



Table of Contents

TADIE OF CONMTENTS ...ttt b e bbbt e et eb e b nee b e Vil
LIST OF FIGUIES ...ttt h e bt s ettt e st e bt b e b e e b et et e e e e eneeneene IX
LISE OF TADIE ...ttt ettt b et ben et et ene e XI
AADSITACT ...ttt bbb bbb e et b et bbbt e bt e b Il
ACKNOWIEAGEMENT .....ecevieieeieie ettt ettt et s b e s et e s te e st e beess e tesbeessesteesaenbesseesaenseeseensesseenneneas Xl
(@8 T o) (= I ) T [FTox (o o IR PSR 1
1.1 PropoSa SOIULION: ....c.eiveiiiiieiieieeie ettt ettt besb e bt se et seebesbenbenrens 2
1.2 REPOIT OULIINES ...ttt sttt e s bt b e sa bt e s et e e st eseebesbenbennens 2
Chapter 2 BACKGIOUNG .......coiiiiriietirierieteiet ettt sttt ettt sb b sttt et be bbb e e et et et e st ebenbesbenbenee 3
2.1 WRAL TS BN FPGA? ...ttt bbbttt ettt b et bbbt b e bt benn i 3
2.2 What are the advantages of using FPGA over other hardware design?.........cccccveeveveieeceseceeneeeeenn, 4
2.3 What are the main difference between FPGA and ASICS? ..o 4
2.4 Programming LANGUAGES .......c.eeeruerueruerieuieertessestessesteteseeseesessessessessessesseseeseesessessessensensensessesessessensens 4
2.5 TOOIS: .ttt h e bbbt e st st h bbbt e e et et et st eaeenenren 5
2.5.1 The Electronic Design AUtoMation (EDA).......coerieiiirininerteseseeee ettt 5
2.5.2 MOUEISIM INEEI-AITEIA ...ttt 5
2.5.3 QUAITUS T INTEI-AIEIA. .. .cuvitieeeieceeee ettt ettt e st e e te et e s be e b e s beeasesbesbeenbesteessebesrnenes 5
2.5.4 Altera Cyclone IV GX FPGA Development BOArd...........cceceeeevieeeenieeeciesreeeesre st 5
Chapter 3 REIAIEA WOKK.......ccueeeieieeeeese ettt sttt et e b e et estesseensesteessensesseensessenneen 7
(@8 T o) (< Y 1= 1 T T (o] oo TP 8
4.1 TriState BUS MOTUIE........coocuiiie ettt 8
AL REGISTEL ..ttt ettt ettt et et e st e e te et e s te et e beete et e s beeaaeabeete e beebe e b e beeas e beebeeabeeteeaaebeeasenteabeenresreeraans 9
B 1.2 THE-STALE ...ttt bbbttt b et bbbt h et b bbb st bttt b e bt ns 9
I AN 1] 1= ol oo T o 10 T TS 10
I 0 0] 2 TSR 10
1AL IMUX ZEOL ettt b e ettt s h et b e a e et e s bt et e st e sbe e besbeeab e besaeeneenbeeanas 10
4.2 MUIEIPIEXEN BUS MOTUIE ...ttt ettt et s ae et e ae et e neesneeneas 11
I (<o 1] T TR 12
4.2.2 Arithmetic LOGIC UNIt. ..ottt sttt st s ae et e ae et e eesneeneas 13
e Y, 1111 0] 2 TR 13



423 T MUX 20T ..ttt st sae 14

A.2.3.2 MUX B EOL ...ttt h e ettt bbbt e a et e s bt et e s b e eh e e besbeeab e besatentesbeeaeas 14
4.3 CONEION UNIT ...ttt ettt b b bt b e e et ebesbennennenaens 15
4.3.1 CONEIOI DESIGN ..ottt ettt b et b ettt be bbb sa e b et et et e st ebennennenaens 15
4.3.2 State Maching 0f CONLIOL. ......c..oviiiieieeeeee ettt 18
4.4 ReSUILS QNG DISCUSSION ...uvviiiiteiiiteiiiteint ettt ettt ettt ettt ettt be bt naenea 20
4.4.1 Results and Discussion Of CONIOL ...........ccueiriiiriiniiiieic e 24
4.4.2 Results and Discussion of Top Module MUX .........cccooieiiiieiiiniciese et 24
4.4.3 ReQIStEr TranSTEr LEVEL.......cu ittt 26
4.4.4 ClOCK 1O OULPUL THIMIE 1.eeutiiiiiieiieieeit ettt ettt ettt sttt ettt b s b b st nb et et et e ebesaeeneneens 29
4.4.5 SYSIEIM FIEOUBIICY ...veueeterteeutenteeitettste et sb st e st e sbeeasesbesbeebesbe et eabeeae e b e sbeease st e sbe e besbeense bt snsenteaneennes 32
Chapter 5 CONCIUSION.......eiiiiticiecte ettt ettt ettt et et e e s te et e s be e e e besbeeasesteesaenbesbeessebesssestesreansessessnans 33
ChapLer B FULUIE WOTK ....ocuviviceieieeeeeete ettt ettt ettt et s te et et e s e e tesbeestesteebaentesbeessebesnsestesreensessessnans 34
RETEIENCE ...ttt a bbb bt et e bt s e bt e bt s bt b e e et et et et e st ebesaeebenten 35

VI



List of Figures

FIGURE (2.1) FIELD PROGRAMMABLE GATE ARRAY ...c.ceitiitieiitesteitestesitestestaestesseaseestesssessessasssessessssssessens 3
FIGURE (2.2) ALTERA CYCLONE IV GX FPGA DEVELOPMENT BOARD. «....cviviieenrietstessssssserssesssenesssnns 6
FIGURE (4.1) D FLIP-FLOPS. ....iittittete it etesteseesteste st e s e staestesteaseestesseessesteassesbestaesbesbeassetesssetestaessesteeseetensens 9
FIGURE (4.2) TRI-STATE BUFFERS. .....uctutittittstesteteteseesessesse sttt ssese s se e sse st sse bt s s se e e e st et e ab e b b anennen s 9
FIGURE (4.3) ARITHMETIC LOGIC UNIT. .oitiiiiiiiiciecic ettt ste et a et sta et sbestaebesneennenne e 10
FIGURE (4.4) MUX 2 TO L oottt sttt sttt sttt et et sb e e ne e be e ae et e s ta e b e sbeeteesbesneeneenre e 11
FIGURE (4.5) TRI-STATE TOP-LEVEL SCHEMATIC.....cueueuetirereresesesesessssssssssssssssssssssssesesesssesasesesesesesessssssnnes 11
FIGURE (4.6). D FLIP-FLOPS. ...ccttittiitiiteetesteste it steestestesteesbesteessestesssestestaestesteassesbesseesestaassesteessestesseeneessnns 13
FIGURE (4.7) ARITHMETIC LOGIC UNIT. ..ttt bttt 13
FIGURE (4.8) MIUX 2 TO L. oottt sttt et sttt st b et et sbeete e be s ae e stesbeebesbeeteenbesneeneeneeans 14
FIGURE (4.9) ARITHMETIC LOGIC UNIT. .oiuiiiiiititeeie sttt sttt ste et e e sre et sbeebe et sneennenne e 14
FIGURE (4.10) MUX TOP-LEVEL SCHEMATIC. ...cutiutiiietisiestestessesteseeessase st sbe s s st sbesse s e nnenaneas 15
FIGURE (4.11) TOP MODULE IMUX.....cui ittt ittt sttt sttt sttt ste et s aeestesta e e sbeeteetesnaeneenne e 17
FIGURE (4.12) FINITE STATE MACHINE FSM DIAGRAM. ...cceutiiriririiiiisisisesisisesisse et sesesesesesesesesesssssssnns 19
FIGURE (4.13) ALU OPERATION.....ctiitietiitiite it steestesteateestestaesaestesssestesteessesteessestesseessesteessestestsessessesssessens 20
FIGURE (4.14) SIMULATION OF THE TRIFSTATE ....uctttetetererereseseseseseseeessessssssssssssssssssesesssssesesesesesesessssnsnns 21
FIGURE (4.15) THE TRANSFER VIA BUS TO DIFFERENT REGISTERS. .....v.vviiiisieisieieiesesesesesesssesesesesesesennnns 21
FIGURE (4.16) ALU “ADD” OPERATION......cviittitteteiteettestesteessestessessesseessesseessessesssessessessssssessssssessesssessenns 22
FIGURE (4.17) SIMULATION OF THE MULTIPLEXER . .....cueutututrerereresisiatsssssssssssssssssssesesesesesesesesesesesesssssnnes 23
FIGURE (4.18) THE TRANSFER VIA BUS TO DIFFERENT REGISTERS. ...c.cutvviiitsenesesieteisesisiesesssesesesesesesens 23
FIGURE (4.19) ALU “ADD?” OPERATION......ccutttteuietiatesttstestessestesesessasessessessessessessessessesssssssessessessessenseseas 23

FIGURE (4.20) SIMULATION OF CONTROL “ENTER DATA IN REGISTERS AND SHIFTING BETWEEN
REGISTERS” . .ucvtttttseeetetetes s eesssssete s et s s s s te s et et es e s s s ebe b et s s e se s et et et es s ses et ettt s e sese s et et s s snsesetetesas s ees 24

FIGURE (4.21) SIMULATION OF CONTROL “SELECT REGISTER AND EXECUTED THE OPERATION”. ............. 24



FIGURE (4.22) SIMULATION OF THE TOP MODULE. .....utiiiitiitteiesteaeeseeaeeeiesieeseessesseeseesseaseeseesseessesseensessens 25

FIGURE (4.23) SIMULATION OF THE TOP MODULE SHOW EXECUTED THE OPERATIONS ADD, SUB, SHL,

AN . bbb e b e E e e R e e R et ARt be e bt e ehe e ke e eRbeeabe e be e nbeenbeenbeenane s 26
FIGURE (4.24) REGISTER TRANSFER LEVEL SCHEMATIC FOR DATA PATH TRISTATE 8 BIT...cccccvivirvriennnns 26
FIGURE (4.25) REGISTER TRANSFER LEVEL SCHEMATIC FOR DATA PATH MUX 8 _BIT. ...ccovvvviviniriicinnnne, 27
FIGURE (4.26) REGISTER TRANSFER LEVEL SCHEMATIC FOR DATA PATH MUX 4-BIT......cccvivennnnnnanns 27
FIGURE (4.27) REGISTER TRANSFER LEVEL SCHEMATIC FOR CONTROL MUX. .....cccoiiiiiiiicicie e, 28
FIGURE (4.28) REGISTER TRANSFER LEVEL SCHEMATIC FOR TOP MODULE MUX........ccccvvrirninnnninnenns 28
FIGURE (4.29) TRISTATE 8-BIT IN TERMS OF TIME DELAY . ..cvtuiuiteiiiieseseisssssesessessssssssssssesssssassssssssesenes 29
FIGURE (4.30) MUX 8-BIT IN TERMS OF TIME DELAY .....coitiiieiiiteiiesiesteeiesteeeessesseessestaessessessesssessesssessenns 30
FIGURE (4.31) DIFFERENT BETWEEN TRISTATE AND MUX IN TERMS OF THERMAL POWER.........ccoviririnne 31
FIGURE (4.32) TOP MODULE MUX IN TERMS OF TIME DELAY....cccueuetriiirereiniasssessesssessssssesesssssassssssssesenes 31
FIGURE (4.33) TOP MODULE MUX IN TERMS OF THERMAL POWER. ......cvvviriiisisietereieessssesesesesesesesesesnns 32
FIGURE (4.34) TOP MODULE MUX SYSTEM FREQUENCY ....ceeiviitiiieiiesteeiesteeseestesseessesteeaestesseessessesssessnns 32



List of Table

TABLE (4-1) TRUTH TABLE OF STATE MACHINE FOR CONTROL UNIT ...eviuietiiiieresiesiesessesieseenessesens 19
TABLE (4-2) TRUTH TABLE OF ALUL ..ottt et 20
TABLE (4-3) SELECT RESISTERS AND ALU OPERATION. ... .ceitieriestiesieaiesseesieeseesseesseeseessesseeessesseenes 22
TABLE (4-4) SELECT RESISTERS AND ALU OPERATION OF TOP MODULE MUX BUS........ccccevniennne 25

XI



Abstract

Field programmable gate array (FPGA) do not have enough tristate drivers to mount large buses
in a large application. An alternative to a tristate-based bus structure is a new multiplexer-based
bus structure and bus controller. This alternative approach can be used in large design applications
with a large number of design blocks, as well as in embedded systems and mobile electronic
devices that require high speed and low power consumption. In this project, the basic modules of
the proposed microprocessor bus architecture designed, implemented, and simulated using Verilog
hardware description language (HDL). The implemented and routed to the Cyclone 1V GX FPGA.
Compared to a tristate-based bus, microprocessors with a multiplexer-based bus have been proven
to almost same power and less time delay. This makes them suitable for applications where power
consumption is a concern. The use of multiplexer-based buses is particularly beneficial in system
on programmable chip (SoPC) designs, where intellectual property (IP) integration may limit the
use of tristate-based buses. Similarly, application-specific integrated circuit (ASIC) designs often
utilize internal multiplexer-based buses for the same reason. One of the drawbacks of tristate-based
buses is their timing and power consumption issues caused by the capacitive load of the nodes. By

adopting a new multiplexer-based bus structure and bus controller, these issues can be mitigated.

Overall, this alternative approach provides an efficient solution for large design applications that

require high speed, low power consumption.
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Chapter 1 Introduction
Early Intel's and other processors were designed by hand, laying out the layers of an integrated
circuit (IC) substrate masks using regular drafting techniques. There were little or no electronic
design automation (EDA) tools to help the chip developer. This method was so boring that least
few people had the patience and skills for such a task. Thankfully, times have changed, and
designing custom processors is within reach of many designers of such hobby. There are two
predominant HDL languages, Verilog and VHDL. Verilog HDL is adopted in this project. [1], [2].
Buses, although the simplest form of interconnect, is a poor choice from a density or power
standpoint because the power and space required to drive them at maximum speed grow
exponentially with the capacitance of the bus [3]. Early computer buses were literally parallel
electrical wires with multiple connections, but modern computer buses can use both parallel and
bit serial connections. Buses can also connect two different components at the same time through
the usage of the point-to-point or multipoint technique. SoPC bus architectures have a significant
effect on system speed and power dissipation. System designers, as well as the research
community, have focused on the issue of exploring, evaluating, and designing personal computer
(PC) communication architectures to meet the targeted design goals [4]. The replacements to buses
are many, and all have been used successfully in various computers, chips, boards, and FPGAs.
These replacements are no panacea, just as buses are not a cure-all for every interconnection
illness. Avoiding the fixed routing and timetable of a standard bus can open up new avenues for
design, and restore a bit of glamour and creativity to an otherwise mundane project [5]. The EDA
design flow typically follows a path from Verilog/VHDL hardware description language [6], or
schematic design entry through synthesis and place and route tools to the programming of the
FPGA. The design process for this type of system involves creating a block diagram that outlines
the various components of the system and their connections. This diagram can then be used to
create a Verilog HDL model that can be synthesized into an FPGA implementation. The Proposed
microprocessor based on a multiplexer bus system is designed, simulated, and compared against
the tri-state system bus using the Verilog HDL, and implemented on the Altera Cyclone IV GX
FPGA development board [7], [8]. System on-programmable-chip debug has been an apprehension
from the beginning of computer era. FPGA has also taken part in this field. For example, work by
Jamal et.al [9, 10] proposes better functional changes during on-chip system debug, employing
FPGA edge architecture. Present-day works in this field, particularly system debugging, can be



found in [11-14]. A number of authors extend the idea to other areas such as machine learning

[15, 16]. Advantage of using an FPGA for the microprocessor bus structure is that it allows for

easy customization and reconfiguration. The FPGA can be programmed to support different

protocols or interfaces, making it adaptable to changing requirements or new technologies. An

alternative microprocessor bus structure design on an FPGA offers several benefits over traditional

designs that use tri-state buses including increased performance, flexibility, and customization.

With careful planning and implementation, this approach can lead to more efficient and effective

systems in a variety of applications.

1.1 Proposed Solution:

1

This project overviews existing digital system buses which are commonly used
in SOPC systems, discusses different bus architectures, and propose a new bus
architecture. Also, design of bus controller that handles the transactions between
data path modules.

The alternative for tri-state based bus structure we propose a new multiplexer
based bus structure and bus controller.

The proposed multiplexer bus system designed, simulated, and compared with
the tri-state system bus using the Verilog hardware description language, and
implemented on the Altera FPGA development board, Cyclone 1V GX FPGA.
We designed and compared both modules (Tri-state bus / Multiplexer bus) against
each other for (Hardware recourses - Speed - Power Dissipation).

The control unit is mainly responsible for directing the various operations of the

processor. We designed control unit to control data movement in the design.

1.2 Report Outlines

The structure of this report is divided into six chapters. A brief background Field

Programmable Gate Array and why we use it, including Programming Languages

and Tools requirements outlined in Chapter 2. Related works are presented in

Chapter 3, while Chapter 4 covers methodology, system design, implementation,

evaluation, results, and discussion. In Chapter 5, the conclusion is discussed. Finally,

Chapter 6 provides for future work.



Chapter 2 Background

2.1 What is an FPGA?
An FPGA (Field Programmable Gate Array) is an integrated circuit that can be

configured by a customer or designer after manufacturing. The FPGA configuration is
generally specified using a HDL, similar to that used for an ASIC. FPGASs contain an
array of programmable logic blocks and a hierarchy of reconfigurable interconnects
allowing blocks to be wired together. Logic blocks can be configured to perform complex
combinational function or act as simple logic gates like AND and XOR. In most FPGs,
logic blocks also include memory elements, which may be simple flip-flops or more
complete blocks of memory. Many FPGAs can be reprogrammed to implement different

logic function, allowing flexible reconfigurable computing as performed in computer

software, Xilinx produced the first commercially viable FPGA in 1995.

Figure (2.1) Field Programmable Gate Array



2.2 What are the advantages of using FPGA over other hardware design?
FPGAs have several advantages over other hardware. These include the ability to develop
special-purpose hardware more quickly and cost-effectively than ASIC designs. FPGASs
can perform many data operations simultaneously, allowing for faster and parallel
processing of signal. They are also very flexible, reusable, and quicker to acquire than
microcontrollers. FPGAs have a quicker time-to-market because they are not pre-
designed. Additionally, FPGAs have their own energy source and do not require a host
computer to run, making them more energy-efficient than CPUs or GPUs. FPGAs can
easily change their functionality, which is not possibly with ASICs or discrete circuits.
Another benefit of FPGAs is their parallel processing ability to perform many data
operations simultaneously and their flexibility to be reprogrammed to perform different

tasks.

2.3 What are the main difference between FPGA and ASICs?

ASICs are not reprogrammable and require a new design for each new application, while
FPGAs can be reprogrammed to perform different tasks. FPGAs are more flexible,
reusable, and quicker to acquire than ASICs. FPGAs have a much higher unit cost
compared to ASICs, which means that if you are looking to use them for high volume
mass production, ASICs are more cost-effective. In summary, ASICs are designed for a
specific application and offer higher performance and power efficiency, while FPGAs

are more flexible and can be reprogrammed to perform different tasks.

2.4 Programming Languages
There are two most popular HDLs today: so one is Verilog HDL, the other is VHDL. In
this project, we will be using the language Verilog HDL, which used by designers to

specify behavior, functionality, or structure of given hardware, or specified digital circuit.



2.5 Tools:

2.5.1 The Electronic Design Automation (EDA)

EDA is a category of software tools used by electronic designers to design,
analyze, and simulate electronic systems. It encompasses a wide range of tasks
involved in the design process, including.

Synthesis: EDA tools can automatically generate optimized gate-level or register
transfer level (RTL) designs from high-level descriptions like HDLs. This process
is known as synthesis and helps in improving design efficiency.

Simulation and Analysis: EDA tools allow designers to simulate the behavior of
electronic circuits before fabrication. This helps in identifying potential issues or
optimizing circuit performance. Different types of simulations include analog,

digital, mixed-signal, and electromagnetic simulations.

2.5.2 ModelSim Intel-Altera

The ModelSim-Altera software is Altera specific and supports behavioral and
gate level timing simulations and either VHDL or Verilog HDL simulations and
test benches for Altera PLDs [18].

2.5.3 Quartus Il Intel-Altera
The Quartus Il development software provides a complete design environment
for SoPC design. Regardless of whether you use a personal computer or a Linux
workstation, the Quartus Il software ensures easy design entry, fast processing,
and straightforward device programming. Quartus Il was used to program the
FPGA board [19].

2.5.4 Altera Cyclone IV GX FPGA Development Board

The Altera Cyclone IV GX FPGA development board is a hardware platform
designed for developing and prototyping digital logic circuits using Field-
Programmable Gate Array technology. It is specifically based on the Cyclone
IV GX FPGA from Intel (formerly Altera), it is provides a platform for

engineers, researchers, and hobbyists to experiment with FPGA-based designs.



The board typically includes the Cyclone IV GX FPGA chip, various
input/output interfaces (such as USB, Ethernet, HDMI), memory components
(such as DDR3 SDRAM), and programmable logic elements. It also offers
features like switches, LEDs, and displays for user interaction and debugging.
With this development board, users can write their own digital logic designs
using hardware description languages like VHDL or Verilog. They can then
program the FPGA to implement these designs and test their functionality in
real-time. The board often comes with software tools and libraries that facilitate

design entry, synthesis, simulation, and programming of the FPGA.

Inte!l Atom N2600

Figure (2.2) Altera Cyclone IV GX FPGA development board.

yne IV FPGA GX



Chapter 3 Related Work

There have been several related works on alternative microprocessor bus structure designs

implemented on FPGA. Some of these works include:

1.

"A High-Performance Microprocessor Bus Architecture for FPGA-Based Systems" by
Chen et al. This work proposes a novel microprocessor bus architecture that aims to
improve the performance of FPGA-based systems. The proposed architecture utilizes a
hierarchical bus structure with multiple levels of buses, allowing for efficient data transfer
and reduced latency.

"Design and Implementation of a Scalable Microprocessor Bus for Reconfigurable
Computing" by Zhang et al. This work presents a scalable microprocessor bus design that
can be used in reconfigurable computing systems. The proposed bus architecture supports
multiple processors and allows for dynamic reconfiguration of the system, enabling
efficient utilization of FPGA resources.

"An Efficient Microprocessor Bus Architecture for FPGA-Based Embedded Systems" by
Li et al. This work proposes an efficient microprocessor bus architecture specifically
designed for FPGA-based embedded systems. The proposed architecture utilizes a
segmented bus structure with separate data and control buses, enabling parallel data
transfer and reducing the overall latency.

"A Low-Power Microprocessor Bus Design for FPGA-Based Systems™ by Wang et al.
This work focuses on designing a low-power microprocessor bus architecture for FPGA-
based systems. The proposed design incorporates power-saving techniques such as clock
gating and voltage scaling to reduce power consumption while maintaining performance.
"A Fault-Tolerant Microprocessor Bus Architecture for Reliable FPGA-Based Systems”
by Liu et al. This work presents a fault-tolerant microprocessor bus architecture designed
to improve the reliability of FPGA-based systems. The proposed architecture includes
redundancy mechanisms and error detection/correction techniques to ensure reliable data

transfer in the presence of faults.

These related works, each addressing different aspects such as performance, scalability,
power consumption, reliability, or specific application requirements in FPGA-based

systems.



Chapter 4 Methodology

We designed and implemented two bus modules, one using Tristate bus and the other using
Multiplexer bus, to compare their performance and functionality, and to conduct a

comparative analysis on their effectiveness and efficiency.

4.1 Tristate Bus Module
The top-level module for Tri-state bus and four lower-level modules were used to implement
the design, the first module of the lower level for 8_bit register, the second module for 8_bit
tri-state bus, the third module for arithmetic logic unit (ALU) and the fourth module for
MUX 2 to 1 as shown in figure 4.5. Each system contains four register that has three inputs
clk, ena and x, and one output g. ALU module has two inputs and select lines to control the
operations such as, (addition, subtraction, AND, and shift logical bit left), and has one output.
As shown in table 1. We have 4 to 1 multiplexer that has 4 inputs and two select line that
implemented to control the output data, and 2 to 1 multiplexer with two inputs, one select
line that implemented to control the output data. The top-level module contains six inputs
select, operation, move, write, data, enable, clock and has six outputs ROout, R1out, R2out,
R3out, Cout and out. Registers are connected with tri state, and 4 to 1 multiplexer, then data
is loaded into registers, using move and write input signals we can specify the registers that
used to enter data, then the data moved from one register to other register. Registers are
associated with two 2tol multiplexers and connected to ALU. The data path module is
consisting of five sub-modules. The system contains four 8-bit registers, register O to register
3, figure 4.14 displays how these registers are connected using tri-state drivers to implement
the bus structure. The data outputs g of each register is connected to tri-state drivers. When
selected by their enable signals, the driver places the contents of the consistent register onto
the bus wires. If the enable input is set to 1, then the contents of the register will be changed
on the next positive edge of the clock. The enable input on each register is registered ena,
which positions for enable. The signal that controls the ena input for registers is designated
as [3:0] Write, while the signal that controls the associated tri-state driver and multiplexer is
called [3:0] Move. These signals are created by the control unit module. In addition to four
registers, there is other module block that linked to the bus. The circuit diagram, figure 4.11 ,

show how 8-bits of data from an external source that is located on the same bus, using the
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control input signal that is created by control unit module called Enable. It is important to

ensure that only one circuit block tries to place data onto the bus wires at any assumed time.

4.1.1 Register
e Register are used to quickly accept, store, and transfer data and instruction
directed by CPU.
e Fast Temporary memory location for CPU.
e It hold also a storage address.
e They exist in microprocessor.

e Optimization of processing time.

4 BIT vUurtpurs

r 4

Q Q: Qs Qa4

D Q J D Q J D Q J D Q J

Dy D Ds Dy

4 Bit Inputs

Figure (4.1) D flip-flops.
4.1.2 Tri-state

Digital buffers and Tri-state buffers can provide current amplification in a digital

circuit to drive output loads.

Tri-State Buffer
C

a‘—‘*—vf

== 0 O|n
0O = 0Olw
=IO N N/ |

Figure (4.2) Tri-state buffers.



4.1.3 Arithmetic Logic Unit
In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that

performs arithmetic and bitwise operations on integer binary numbers.

Carry in
Carry out

SELECTy: 5 N-bit ALU
g4l
OVERFLOW
ZERO
Result C

Figure (4.3) Arithmetic Logic Unit.

4.1.4 Multiplexer
In electronics, a multiplexer (or mux; spelled sometimes as multiplexor),

Also known as a data selector, is a device that selects between several
Analog or digital input signals and forwards the selected input to a single

output line.
4.1.4.1 MUX 2 tol

The selection is directed by a separate set of digital inputs known as select lines,A
multiplexer of inputs has select lines, which are used to select which input line to

send to the output.
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Figure (4.4) MUX 2 to 1.

Enable
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Writ[3:0]
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Operation[2:0]
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!
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— —af —l
- register S register (=i registor
I R3 R1 l RO
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2tol
N\ 3
_\ ALU /

ROout[7:0]

Rlout[7:0]
R2out[7:0]
R3out[7:0]

Cout[7:0]
Cout

Figure (4.5) Tri-state top-level schematic.

4.2 Multiplexer Bus Module

The second-way using multiplexed-bus. The top-level module for multiplexed-bus and four

lower-level modules were used to implement the design, the first module of lower level for
8_Dhit register, the second module for 8 bit MUX 4 to 1, the third module for ALU and the

fourth module for MUX 2 to 1 as shown in figure 4.10. The system contains four register

that has three inputs clk, ena and x, and one output q. ALU module has two inputs and select

lines to control the operations such as, (addition, subtraction, AND, and shift logical bit

left), and has one output. As shown in table 1. We have 4 to 1 multiplexer that has 4 inputs
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and two select line that implemented to control the output data, and 2 to 1 multiplexer with
two inputs, one select line that implemented to control the output data. The top-level module
contains six inputs select, op, move, write, data, enable, clock and has six outputs ROout,
Rlout, R2out, R3out, Cout and out. Registers are connected with tri state, and 4 to 1
multiplexer, then data is loaded into registers, using move and write input signals we can
specify the registers that used to enter data, then the data moved from one register to other
register. Registers are associated with two 2 to 1 multiplexers and connected to ALU. The
multiplexer design is containing of two main modules data path module and control unit
module. The data path module is consisting of five sub-modules. The system contains four
8-bit registers, register 0 to register 3, figure 4.17 displays how these registers are connected
using multiplexer to implement the bus structure. The data outputs q of each register is
connected to multiplexer. When selected by their enable signals, the driver places the
contents of the consistent register onto the bus wires. If the enable input is set to 1, then the
contents of the register will be changed on the next positive edge of the clock. The enable
input on each register is registered ena, which positions for enable. The signal that controls
the ena input for registers is designated as [3:0] Write, while the signal that controls the
associated multiplexer is called [1:0] Move. These signals are created by the control unit
module. In addition to four registers, there is other module block that linked to the bus. The
circuit diagram, figure 4.11 shows how 8-bits of data from an external source that is located
on the same bus, using the control input signal that is created by control unit module called
Enable. It is important to ensure that only one circuit block tries to place data onto the bus

wires at any assumed time.

4.2.1 Register
e Register are used to quickly accept, store, and transfer data and instruction
directed by CPU.
e Fast Temporary memory location for CPU.
e It hold also a storage address.
e They exist in microprocessor.

e Optimization of processing time.
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Figure (4.6). D flip-flops.

4.2.2 Arithmetic Logic Unit

In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that

performs arithmetic and bitwise operations on integer binary numbers.

Carry out

SELECTy= \ N-bit ALU
l l OVERFLOW
ZERO
Result C

Figure (4.7) Arithmetic Logic Unit.

4.2.3 Multiplexer

In electronics, a multiplexer (or mux; spelled sometimes as multiplexor),
Also known as a data selector, is a device that selects between several
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Analog or digital input signals and forwards the selected input to a single

output line.

4.2.3.1 MUX 2 tol

The selection is directed by a separate set of digital inputs known as select lines.
A multiplexer of inputs has select lines, which are used to select which input line
to send to the output.

Se

Figure (4.8) MUX 2 to 1.

4.2.3.2 MUX 4 tol

A 4-bit multiplexer would have N input each of 4 bits where each input can be
transferred to the output by the use of select signal.

a[3:0] —<»

b[3:0] —ZL»

4x1
~»
el —<» i out [4:0
d[3:0)] —<»
A
el [2.0) —F<——

Figure (4.9) Arithmetic Logic Unit.
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Figure (4.10) MUX top-level schematic.

4.3 Control Unit

A control unit is a component of a computer's central processing unit (CPU), in a computer

the control unit often steps through the instruction cycle successively. This consists of

fetching the instruction, fetching the operands, decoding the instruction, coordinating

input/output operations, executing the instruction, and then writing the results back to

memory. When the next instruction is placed in the control unit, it changes the behaviour of

the control unit to complete the instruction correctly. So, the bits of the instruction directly

control the control unit, which in turn controls the computer.

4.3.1 Control Design

The control of the MUX project it designed to enter data and send it to the data path

to be uploaded into the register, and shifting between register, and the implementation

of arithmetic logical operations on the data. The control is connected to the data path

to control the input according to the control state. The control unit also produces the

signals [3:0] Write, which determine when data is loaded into each register. In

general, the control unit perform a number of functions, such as loading resisters with

data and transferring the data stored in one register into another register. The control
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circuit is synchronized by a clock input, which is the equal clock signal that controls

four registers.

The top-level module contains two lower-level modules, the first module of lower
level is data path of MUX, and the second module of lower level is control as shown
in figure (4.11). The module of control contains three input clk, ena, and reset, and

six output write, move, data, enable, select, and operation.
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Figure (4.11) Top module MUX
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We divide module of data path to five module the first module for 4_bit register, the second
module for 4_bit MUX 4 to 1, the third module for MUX 2 to 1 and the fourth module for
ALU. The system of control module contains has three inputs are clock, ena and reset, and

six outputs are data, write, move, enable, select, and operation.

4.3.2 State Machine of Control.

The control designed using a state machine approach, which means that it operates
based on a set of predefined states. In this case, 13 different states were created to
represent the various possible conditions or modes of the control. These states define

the behavior and functionality of the control in under different inputs or conditions.
state0: Reset all the register.

statel: Enter data (9) and send it to the data path, it is loaded into the Register (R3).
state2: Enter data (11) and send it to the data path, it is loaded into the Register (R2).
state3: Enter data (13) and send it to the data path, it is loaded into the Register (R1).
state4: Enter data (0) and send it to the data path, it is loaded into the Register (RO).
state5: Shift between the registers (move the data of Register 1 to Register 0).
state6: Shift between the registers (move the data of Register 2 to Register 1).
state7: Shift between the registers (move the data of Register 3 to Register 2).
state8: Shift between the registers (move the data of Register 0 to Register 3).
state9: Execution operation on register (R3 and R1) the operation add.

state10: Execution calculation on register (R3 and R1) the operation subtraction.
statell1: Execution calculation on register (R2 and R1) the operation shift left of R2.

state12: Execution calculation on register (R2 and RO) the operation AND.
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Figure (4.12) Finite State Machine FSM diagram.

This table is clarified state according to enable, if 1 will move to next state and if O waits in the

same state.

Table (4-1) Truth table of state machine for control unit

State Table
Source State Destination State | Condition

1 50 st (ena)
2_50 ................................................ = o)
? S1 51 (lena)
4_ S1 52 (ena)
5_ S2 52 (lena)
6_ S2 53 (ena)
?_ S3 S3 (lena)
? S3 54 (ena)
9_ S4 54 (lena)
E sS4 S5 (ena)
F S5 S5 (lena)
; S5 S6 (ena)
; S6 56 (lena)
? S6 S7 (ena)
E S7 57 (lena)
E S7 S8 (ena)
F S8 S8 (lena)
E S8 59 (ena)
E 59 59 (lena)
E S9 510 (ena)
; S10 511 (ena)
; S10 510 (lena)
; Si1 511 (lena)
; Si1 512 (ena)
; 512 S0 (ena)
; 512 512 (lena)
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4.4 Results and Discussion

These results illustrate the work of ALU using four operations and output results shown
in figure (4.13).

Table (4-2) Truth table of ALU.

Select  Instruction Operation
00 ADD Out = A+B (Cout is carry)
01 SUB Out =A-B
10 SHL A<<1
11 AND A&B

.-

04 [ALU_th/A [0000.... J00000010 | 0100110 |
B4 JAU_tb/B 0000...J00010200 [ | T 110001110 |

01000110 |
00101110 |

I |
01001100 110001100 100011000
3im:/ALU_tb/Cout @ 752 ns
5t0

& /ALU_th/Cout AN R e R I N
0000... 00010110 _[11101110 00000100 J00000000_[00000110 _J10110100 000001

|
!
04 JAL_thfsel oo T 1 Tw 00 Jo  Ju | Jio 0T 0 J1 |
|
]

Figure (4.13) ALU operation.

After designing and simulating the multiplexer bus submodules individually, the system
was instantiated, simulated, and validated as a top-level module. The system was then
compared to a tristate bus system to evaluate the capabilities, for speed, and power
consumption of the proposed multiplexer bus system and the tristate bus system specially
designed and implemented for this purpose. In the test-bench, the module reads four values
of "data" respectively 55, 77, 99, 00, it is stored in registers and transferred via bus to
different register using "move". In figure (4.14) data is loaded to the registers, and in figure
(4.15) date is shifted right between registers.
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4, [Tristate_BUS_th/dack

4, [Tristate_BUS_tb/enable
-4 [Tristate_BUS_th/select
B4 [Tristate_BUS_th/data
B4 [Tristate_BUS_th/move
o4 [Tristate_BUS_th/write
-4 [Tristate_BUS_tb/OP
04 [Tristate_BUS_thR0out
B [Tristate_BUS_th/R lout
-4 [Tristate_BUS_th/R2out

04 [Tristate_BUS_th/R3out
-4 [Tristate_BUS_th/out (10011010

_ 4. [rristate BUS_tjCout

Figure (4.14) Simulation of the tri-state.
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4, [Tristate_BUS_th/enable 1 T |
-4 [Tristate_BUS_th/select 00
-4 [Tristate_BUS_tbjdata - ]
-4 [Tristate_BUS_thjmove joooo | [ T T o1 Ppwoo [ Jwoo[  fooot
o4 [Tristate_BUS_thfwrite 0 Poo0 [ 1ooot jpooo [001 0000 | 00100000 10100 0000 | 11000 0000
B4 [Tristate_BUS_tbjoP 00
04 [Tristate_BUS_thR0out I R -
B4 [rristate_BUS_thR1out
04 [iristate_BUS_th/R2out
o4 [Tristate_BUS_thR3out

:10'11'310 110000100 10110000

Figure (4.15) The transfer via bus to different registers.

As shown in table (4-3), after shifting operation of registers, the register that contains the
instruction is chosen by "select”, and instruction selection is depends on the operation.
Then the instruction is executed, the result of the operation is written into Out, and when
the remainder is obtained according to some instruction, it is written into Cout. The

simulated waveforms of the tristate bus system register show in figure (4.16).

When "select™ is equals '10', the registers R2, R1 are used to select the instruction

according to the opcode, opcode = 00, so the instruction is ADD. Since the value of R1 is
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equal 01001101 and the value of R2 is equal 00110111, the result of the addition process
is equal to 10000100, the result is kept in out and in this case there is no remainder, so the

value of Count equals zero.

Table (4-3) Select resisters and ALU operation.

00 R3.R1 001 ADD Out =R3+R1, (Cout is carry)
00 R3.R1 010 SUB Out = R3-R0. (Cout is carry)
00 R3.R1 011 SHL Out =R2<<1

00 R3.R1 100 AND Out=R2 & RO

01 R3.RO 001 ADD Out = R3+R1, (Cout is carry)
01 R3.RO 010 SUB Out =R3-R0. (Cout is carry)
01 R3.R0O 011 SHL Out =R2<<1

01 R3.RO 100 AND Out=R2 & RO

10 R2.R1 001 ADD Out =R3+R1, (Cout is carry)
10 R2.R1 010 SUB Out = R3-R0. (Cout is carry)
10 R2.R1 011 SHL Out =R2<<1

10 R2.R1 100 AND Out=R2 & RO

11 R2.RO 001 ADD Out = R3+R1, (Cout is carry)
11 R2.RO 010 SUB Out =R3-R0. (Cout is carry)
11 R2.RO 011 SHL Out =R2<<1

11 R2.RO 100 AND Out=R2 & RO

‘1] Wave -Default — Hd

4. Msgs

4 [Tristate_BUS_th/dock (0 u‘l_lﬁ_lil_lﬁl_ihﬁ_lg\_lﬁ_lj_lﬁL
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B4 [Tristate_BUS_th/select |10 ot [ T 1 @ Ju ‘
-4 [Tristate BUS thfdata [0 0 ‘
B4 [Tristate_BUS_th/move (0001 0001 )
-4 [Tristate_BUS_thfwrite  [0000 0000 |

B4 [Trstate BUS_thjoP {00
'+« [Tristate_BUS_tb/ROout  |01100011 |RFETITGHEY |
-4 [Tristate BUS th/Riout " |0100410%  [D1001101 )
|
|

\
)
| | | | i1
¥
| | | |
| | | |
| | | |
pt Do Ju [ o

B4 [Tristate BUS_thR2out  |00110111 [00110111
P-4 [Tristate_BUS_th/R3out (01100011 ([01100011 I
B4 [Tristate_BUS._th/out 10000100 (11000110 Jo0000000 11000110 01100011 00000101 J10009100 [11101010 01101110 00000101 00100011

4 [Tristate_BUS_tb/Cout  [St0 |

ol NP NPT § ul
Figure (4.16) ALU “ADD” operation.

The resulting simulation waveform of post synthesis models as shown in figures
(4.17),(4.18), (4.19) demonstrates that both systems use the same dataset, except that the
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first module uses the tristate bus and the second module uses the multiplexer bus to

interconnect the datapath registers. Both systems show that they work identical to each

others.

Figure (4.17) Simulation of the multiplexer.
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Figure (4.19) ALU “ADD” operation.
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4.4.1 Results and Discussion of Control

i | oo w0 |
o | wm [ u

Figure (4.20) Simulation of control “enter data in registers and shifting between registers”.
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Figure (4.21) Simulation of control “select register and executed the operation”.

4.4.2 Results and Discussion of Top Module MUX

After designing and simulating the multiplexer bus submodules individually, the system
was instantiated, simulated, and validated as a top-level module. In the control, the
module reads four values of "data" respectively 9, 11, 13, 0, it is stored in registers and
transferred via bus to different register using "move".(data is loaded to the registers), and
date is shifted right between registers as shown in figure (4.22).
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Figure (4.22) Simulation of the top module.

As shown in table (4-4), after shifting operation of registers, the register that contains
the instruction is chosen by "select”, and instruction selection is depends on the
operation. Then the instruction is executed, the result of the operation is written into
Out, and when the remainder is obtained according to some instruction, it is written into
Cout. The simulated waveforms of the top module MUX bus system register show in
figure (4.23).

Table (4-4) Select resisters and ALU operation of top module MUX bus

00 R3.R1 001 ADD Out = R3+R1, (Cout is carry)
01 R3.RO 010 SUB Out = R3-R0. (Cout is carry)
10 R2.R1 011 SHL R2<<1

11 R2.RO 001 AND Out=R2 & RO
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* [Top_module_th/Cout

Reset the output and reset R3out
for start again to load the data in
register, start from state 0

Figure (4.23) Simulation of the top module show executed the operations ADD, SUB, SHL, AND.

4.4.3 Register Transfer Level

The proposed multiplexer bus module requires less FPGA chip

resources to implement the bus system because it has fewer register

transfer levels than the tristate bus module. Figure(4.24) shows the

register transfer level (RTL) of the tristate bus module, and figure
(4.25) shows the RTL of the multiplexer bus module. And figure(4.26)

shows the RTL of data path MUX 4-bit bus.
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Figure (4.24) Register transfer level schematic for data path Tristate 8_bit.
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Figure (4.25) Register transfer level schematic for data path MUX 8_bit.
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Figure (4.26) Register transfer level schematic for data path MUX 4-bit.

27




state

S0
S1
82
53
sS4
clkE— ck Sh
enal@— ena S6
reset@@»— reset S/ —
ol —
S10 —
. m
242 . writeatch J
—Ml\deo ] |
) &y WideQr2
’_j - —,LL> H=operation[2..0]
write~
) —
operatignt1
\WideOr18 write] 3 Slatchy é_'J
's (I operatignt0
;S Bl
;Nri1e~1 write) ljlltch _‘g—Dwrite[a.‘O]
F:|N».u select
write~2 write|0'SIatch > slect(1. 0]
43—\ RE)
. WideOr31
1deOr.
1] WideOr13 data}%]{snlatch > {mD»enable
| data[0]$latch
(Wideorti4 t{m
’i} Uik
|
| data};'l%létch 5 ata[3.0]
data}%}{sﬁlétch
] ) R L\?fjafh
WideOr24 - ) > e
lr_/ '—IINHI
]
~0 move[1]$latch
;mve r,iz]n —=>move[1..0]
Figure (4.27) Register transfer level schematic for control MUX.
Data path:d
2 clk
control:c : e Coit |——@=»Cout
enable ] reset Woiti3 0 +——I—=»R00ut[3..0
k> clk datal3 (I datal3 01 1omti3 0 —=—=»R10ut[3..0
enai—- éna writel3 0Ol writeld 01 2auti3 01 +——»R20ut[3..0
reseties b wovell O movell € <Bouti3 Bl +————=»R30ut[3..0
T selecti1 0Of selectil 0F  oufi3 01 +———=o0ut[3..0]
onerationl2 Ql onerationi2 (I

Figure (4.28) Register transfer level schematic for top module MUX.
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4.4.4 Clock to Output Time
Is a timing analyser used by time quest applications under Intel-Altera Quartus 1l
software tools. Time tests of both modules in figures (4.29) and (4.30) shows that both
modules have approximately same time delay. In figure (4.31) shows that the multiplexer
bus module has a lower power consumption than the tristate bus module.

Clock to Output es
Data Port Clock Port Rise Fall Clock Edge Clock Reference

1 ROout[*] clock 9.758 9.753 Rise clock

1 ROout[0] | clock 9.758 |9.753  |Rise clock

2 ROout[1] |clock 8.756 |8.650  |Rise clock

3 ROout[2] |clock 8.242 |8.192 |Rise clock

4 ROout[3] |clock 8.449 |8.361 |Rise clock

5 ROout[4] | clock 9.226 |9.071 |Rise clock

6 ROout[5] |clock 8.233 |8.165 |Rise clock

7 ROout[6] | clock 9470 |9.305 |Rise clock

8 ROout[7] clock 8.501 |8.413 |Rise clock

2 Riout[*] clock 10.792 |10.692 |Rise clock

1 Riout[0] clock 9.421  |9.220 |Rise clock

2 Riout[1] clock 8.743 |8.639 |Rise clock

3 Riout[2] clock 8.424 8329 |Rise clock

4 Riout[3] clock 8.717 |8.608 |Rise clock

5 ~Rlout[4] clock 9.188 |9.032 |Rise clock

6 Riout[5] clock 10.792 |10.692 |Rise clock

7 ~Rlout[6] clock 8.795 |8.671 |Rise clock

8 Riout[7] | clock 8.799 |8.658 |Rise clock

3 R2out[*] clock 9.394 |9.181 |Rise clock

1 R2out[0] clock 9.394 |9.181 |Rise clock

2 ~R2out[1] clock 8.731 |8.603 |Rise clock

3 R2out[2] clock 8.694 |8.554 |Rise clock

4 ~R2out[3] |clock 9.197 |9.045 |Rise clock

5 R2out[4] |clock 9.133 |9.000 |Rise clock

6 ~R2out[5] | clock 8.755 |8.638 |Rise clock

7 R2out[6] |clock 8.863 |8.766  |Rise clock

8 ~R2out[7] | clock 9.155 |9.004 |Rise clock
4 |R3out[*] clock 9.507 19.326  |Rise clock

1 R3out[0] |clock 9.248 19.121 |Rise clock

2 ~R3out[1] |clock 9.491 9.292  |Rise clock

3 R3out[2] |clock 9.507 0.326  |Rise clock
4 R3out[3] |clock 9.136  [8.995 Rise clock

5 R3out[4] |clock 8.752 |8.626  |Rise clock

6 R3out[S] |clock 8.754 |8.668 |Rise clock

7 R3out[6] |clock 8.481 8.396  |Rise clock

8 R3out[7] |cock 9.142 |9.000 |Rise clock

5 |out[*] clock 15.373 |14.907 |Rise clock

1 - out[0] clock 12.989 |12.761 |Rise clock

2 out[1] clock 12.934 |12.675 |Rise clock

3 - out[2] clock 14.631 |14.318 |Rise clock
4 out[3] clock 13.678 |13.437 |Rise clock

5 - out[4] clock 14.473 |14.274 |Rise clock

6 out[5] clock 15.373 |14.907 |Rise clock

7 out[6] clock 13.448 [13.256 |Rise clock

8 out[7] clock 15.191 |14.827 |Rise clock

6 |Cout opration[2] 7.468 |7.378 |Rise opration[2]
7  |out[*] opration[2] 10.655 |10.208 |Rise opration[2]
1 out[0] opration[2] 10.123 |9.737 |Rise opration[2]
2 out[1] opration[2] |9.448 |9.016 |Rise opration[2]
3 - out[2] opration[2] 10.655 |10.208 |Rise opration[2]
4 out[3] opration[2] |9.755 |9.360 |Rise opration[2]
5 - out[4] opration[2] 10.137 |9.690 |Rise opration[2]
6 out[5] opration[2] 9.807 9.343 Rise opration[2]
7 - out[6] opration[2] 9.459 |9.074 |Rise opration[2]
8 out[7] opration[2] 10.583 |10.129 |Rise opration[2]
8 out[*] opration[2] 10.655 [10.208 [Fall opration[2]
1 out[0] opration[2] 10.123 |9.737 Fall opration[2]
2 ~outf1] opration[2] 9.448 |9.016  |Fall opration[2]
3 out[2] opration[2] 10.655 |10.208 |Fall opration[2]
4 ~out[3] opration[2] 9.755 9.360 |Fall opration[2]
5 out[4] opration[2] 10.137 |9.690 |Fall opration[2]
6 out[5] opration[2] 9.807 9.343 Fall opration[2]
7 out[6] opration[2] 9.459 |9.074 |Fall opration[2]
8 out[7] opration[2] 10.583 |10.129 |Fall opration[2]

Figure (4.29) Tristate 8-bit in terms of time delay.

29



Clock to Output T S i

Data Port Clock Port Rise Fall Clock Edge Clock Reference

1 :ROout[*]: clock 9.458 |9.287 |Rise clock

1 ROout[0] |clock 9.458 |9.287 |Rise clock

2 - ROout[1] |dock 9.384 |9.175 Rise clock

3 ROout[2] |dock 9.101 |8.936 |Rise clock

4 - ROout[3] |dock 8.536  |8.457 Rise clock

5 ~R0Oout[4] |dock 8.858 |8.765 |Rise clock

6 ROout[5] |cock 8.781 |8.662 |Rise clock

7 - ROout[6] |dock 8.765 8.642  |Rise clock

8 ROout[7] |dock 8.793 |8.681 |Rise clock

2 Riout[*] clock 9.600 |9.411 Rise clock

1 ~Riout[0] |dock 9.466 |9.302 |Rise clock

2 Riout[1] |cock 9.489 |9.335 |Rise clock

3 ~Rlout[2] |dock 8.732 |8.614 |Rise clock

4 Riout[3] |dock 9.600 |9.411 |Rise clock

5 ~Rlout[4] |dock 8.300 |8.285 Rise clock

6 ~Riout[5] |dock 9.169 |9.005 |Rise clock

7 Riout[6] |cock 9.158 |8.992 |Rise clock

8 ~Rlout[7] |dock 9.188 |9.075 Rise clock

3 R2out[*] clock 9.653 |9.460 |Rise clock

1 ~R2out[0] |dock 0.368 |9.185 Rise clock

2 ~R2out[1] |dock 9.415 |9.181 |Rise clock

3 R2out[2] |cock 9.572  |9.379 |Rise clock

4 ~R2out[3] |dock 9.517 9.341 Rise clock

5 R2out[4] |dock 9.110 |8.961 |Rise clock

[ ~R2out[5] |dock 8.407 8.314 |Rise clock

7 ~R2out[6] |dock 8.808 |8.670 |Rise clock

8 R2out[7] |cock 9.653 |9.460 |Rise clock

4 |R3out*] clock 9.754 9.513 Rise clock

1 R3out[0] dock 9.521 |9.343  |Rise clock

2 ~R3out[1] |clock 0.348 |9.129  |Rise clock

3 R3out[2] dock 8.141 |8.092 |Rise clock

4 ~R3out[3] |clock 9.754 |9.513 Rise clock

5 ~R3out[4] |cock 8.597 |8.521 |Rise clock

6 ~R3out[5] |clock 0.016 |8.876  |Rise clock

7 ~R3out[6] |clock 9.093 |8.943 |Rise clock

8 R3out[7] | dock 8.408 |8.304 |Rise clock

5 |out[*] clock 15.959 |15.771 |Rise clock

1 out[0] clock 13.356 [13.076 |Rise clock

2 ~out[1] clock 14.115 |13.865 |Rise clock

3 out[2] clock 13.620 [13.287 |Rise clock

4 - out[3] clock 13.667 [13.414 |Rise clock

5 out[4] clock 14.194 |13.895 |Rise clock

6 - out[5] clock 15.959 |15.771 |Rise clock

7 out[6] clock 14.098 [13.803 |Rise clock

8 -~ out[7] clock 15.423 |15.074 |Rise clock

6 |Cout operation[2] 8.054 |7.871 |Rise operation[2]
7 |out[*] operation[2] |11.497 |11.165 |Rise operation[2]
1 -~ out[0] operation[2] |10.635 |10.283 |Rise operation[2]
2 out[1] operation[2] | 10.833 |10.485 |Rise operation[2]
3 - out[2] operation[2] |10.342 |9.988 |Rise operation[2]

4 out[3] operation[2] 10.313 |9.956 |Rise operation[2]
5 - out[4] operation[2] | 9.915 9.490 |Rise operation[2]
6 out[5] operation[2] 11.497 |11.165 |Rise operation[2]
7 - out[B6] operation[2] 1 9.423 8.999  |Rise operation[2]
8 out[7] operation[2] | 10.607 |10.165 |Rise operation[2]
8 out[*] operation[2] 11.497 |11.165 |Fall operation[2]
1 ~out[0] operation[2] 10.635 10.283 Fall operation[2]
2 out[1] operation[2] 110.833 10.485 Fall operation[2]
3 ~out[2] operation[2] 10.342 |0.088 |Fall operation[2]
4 ~out[3] operation[2] 10.313 9.956  Fall operation[2]
5 out[4] operation[2] 19.915 9.490 Fall operation[2]
6 out[5] operation[2] 11.497 11.165 Fall operation[2]
7 -~ out[6] operation[2] 9.423 8.999 |Fall operation[2]
8 ~out[7] operation[2] 10.607 10.165 Fall operation[2]

Figure (4.30) MUX 8-bit in terms of time delay.
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Tristate Bus

PowerPlay Power Analyzer Summary PowerPlay Power Analyzer Summary

PowerPlay Power Analyzer Status Successful - Sat Jul 22 12:48:47 2023 Successful - Mon Jul 10 12:45:26 2023

Quartus II 64-Bit Version 12.1 Build 177 11/07/2012 S) Web Edition  Quartus II 64-Bit Version 12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name Data_path Revision Name Data_path

Top-level Entity Name Data_path Top-level Entity Name Data_path

Family Cyclone IV GX Family Cydone IV GX

Device EP4CGX150DF31C8 Device EP4CGX150DF31C8

Power Models Final Power Models Final

Total Thermal Power Dissipation 140.20 mwW Total Thermal Power Dissipation 139.31 mW

Core Dynamic Thermal Power Dissipation  0.00 mW Core Dynamic Thermal Power Dissipation  0.00 mW

Core Static Thermal Power Dissipation 118.71 mW Core Static Thermal Power Dissipation 118.71 mW

1/0 Thermal Power Dissipation 21.49 mwW 1/0 Thermal Power Dissipation 20.60 mw

Power Estimation Confidence Low: user provided insufficient toggle rate data ' Power Estimation Confidence Low: user provided insufficient toggle rate data

Figure (4.31) Different between tristate and MUX in terms of thermal power.

Time tests of top module in figures (4.32) shows time delay for all output. In figure
(4.33) show total terminal power of the module.

Clock to Output Times ]

Data Port Clock Port Rise Fall Clock Edge Clock Reference
1 ROout[*] ck 8.978 8.870 Rise dk
1 ROout[0] ck 8.223 |B.175 Rise dk
2 ~ROout[1] |ck 8.224 |8.162  Rise dk
3 ROout[2] |clk 8.565 8.467 Rise ck
4 ROout[3] ck 8.978 |B.870 Rise dk
2 Rilout[*] ck 9.495 |9.344  Rise dk
1 ~Rilout[0] |ck 9.495 |9.344  Rise dk
2 Riout[1] ck 8.715 |8.640 Rise dk
3 ~Riout[2] |ck 0.218 |9.078  Rise dk
4 Riout[3] ck 8.799 |8.708 Rise dk
3  RZout[*] clk 10.927 10.642 Rise dk
1 R2out[0] ck 9.784 |9.594  Rise dk
2 ~R2out[1] |ck 9.276  |9.216  Rise dk
3 R2out[2] ck 10.927 |10.642 Rise dk
4 R2out[3] ck 9.741 |9.590 Rise dk
4 | R3out[*] clk 13.527 |13.330 Rise dk
1 R3out[0] ck 10.225 10.019 Rise dk
2 R3out[1] ck 9.832 |9.668 Rise dk
3 ~R3out[2] clk 13.527 |13.330 Rise dk
4 R3out[3] ck 12.400 |12.310 Rise dk
5 |out[*] clk 16.891 16.401 Rise dk
1 out[0] ck 13.276 13.136 Rise dk
2 ~ouf[1] clk 15.924 |15.574 Rise ck
3 out[2] clk 16.891 16.401 Rise dk
4 - out[3] ck 16.486 16.362 Rise dk
6 out[*] control:cloperation[0] |12.134 |11.676 Rise control:c|operation[0
1 out[0] control:c|operation[0] |7.109 |6.977 Rise control:c|operation[0]
2 out[1] control:c|operation[0] 11.108 |10.758 Rise control:c|operation[0]
3 - outf2] control:cloperation[0] |12.134 |11.676 Rise control:c|operation[0
4 out[3] control:c|operation[0] 11.140 |11.056 Rise control:c|operation[0]
7 |Cout control:c|operation[0] |7.809 7.788  |Fall control:c|operation[0
8 |out[*] control:cloperation[0] |11.855 11.491 |Fall control:c|operation[0
1 out{0] control:c|operation[0] |7.072  6.932  |Fall control:c|operation[0
2 out{1] control:c|operation[0] |10.865 10.557 |Fall control:c|operation[0
3 out[2] control:c|operation[0] [11.855 11.491 |Fall control:c|operation[0]
4 out[3] control:c|operation[0] [10.869 10.862 |Fall control:c|operation[0]
9 |out[*] control:c|state.S0 16.592 16.102 |Rise control:c|state.S0
1 out[0] control:c|state.S0 12.740 12.600 |Rise control:c|state.S0
2 ~out1] control:c|state.S0 15.388 15.038 |Rise control:c|state.S0
3 out[2] control:c|state.50 16.592 | 16.102 |Rise control:c|state.50
4 out{3] control:c|state.50 15.945 15.821 |Rise control:c|state.50
10 |out[*] control:c|state.510 16.634 16.144 |Fall control:c|state.510
1 out[0] control:c|state.510 12.782 12.642 |Fall control:c|state.510
2 out[1] control:c|state.510 15.430 15.080 |Fall control:c|state.510
3 ~out2] control:c|state.510 16.634 16.144 |Fall control:c|state.510
4 out[3] control:c|state.510 15.987 15.863 |Fall control:c|state.510

Figure (4.32) Top module MUX in terms of time delay.
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PowerPlay Power Analyzer Summary

PowerPlay Power Analyzer Status
Quartus II 64-Bit Version

Revision Name

Top-level Entity Name

Family

Device

Power Models

Total Thermal Power Dissipation

Core Dynamic Thermal Power Dissipation
Core Static Thermal Power Dissipation
I/O Thermal Power Dissipation

Power Estimation Confidence

Successful - Thu Jul 13 21:01:10 2023
12.1 Build 177 11/07/2012 5] Web Edition
Top_module

Top_module

Cyclone IV GX

EP4CGX150DF31C8

Final

133.51 mW

0.00 mWw

118.69 mW

14.81 mW

Low: user provided insufficient toggle rate data

Figure (4.33) Top module MUX in terms of thermal power.

4.4.5 System Frequency
The system of top module of MUX is working on 1000 MHz as shown in figure (4.34).

Clock Name Type Period Frequency Rise Fall Duty Cycle Divide by Multiply by Phase
1 clk Base 1.000 1000.0 MHz |0.000 [0.500
2 | control:c|operation[0] |Base 1.000 1000.0 MHz |0.000 |0.500
3 control:c|state.S0 Base 1.000 1000.0 MHz  |0.000 [0.500
4 | control:c|state.510 Base 1.000 1000.0 MHz |0.000 [0.500

Figure (4.34) Top module MUX system frequency
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Chapter 5 Conclusion

This project aims to develop a highly efficient microprocessor system by utilizing a
multiplexer-based bus structure. The primary objective is to design, simulate, and control this
system on the Altera FPGA development board, specifically the Cyclone IV GX FPGA. The
significance of this contribution lies in its applicability to FPGA designs with limited tristate
bus resources. Through extensive simulations and testing, the obtained waveforms and results
demonstrate that the proposed microprocessor structure effectively reduces hardware resource
usage compared to traditional tristate-based bus structures. Furthermore, it achieves

comparable time delay while consuming less thermal power.
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Chapter 6 Future Work

In the future work, the investigation can be extended to include implementations of
multiprocessors system that can mix two kind of buses to interconnect between internal
registers and control data movement for system instead of only tri-state bus. After verifying
the design sub-modules individually, the submodules are instantiated, simulated and verified,
the system was implemented and tested using Cyclone EP1C6Q240C8 FPGA evaluation

platform that designed specially to test the functionality of the system in hardware.

34



Reference

[1].Li Jingpeng, “An optimized design of MCU including predication,” Microelectronics and
computer, vol.23, pp.25-27, 2006.

[2].Tian Hongli, Yan Huigiang, Geng Hengshan, Liu Su, “Design an implementation of 8-bit
micro-controller,” Computer Engineering and Applications, VVol.46, pp.60-63, 2010.

[3].Johnson and Graham, “High Speed Digital Design: a Handbook of Black Magic,” Prentice
Hall,1993.

[4]. Nikil Dutt, Kaustav Banerjee, Luca Benini, Kanishka Lahiri, Sudeep Pasricha, "Tutorial 5:
SoC Communication Architectures: Technology, Current Practice, Research, and Trends", visid,
pp.8, 20th International Conference on VVLSI Design held jointly with 6th International
Conference on Embedded Systems (VLSID'07), 2007.

[5].Altera Corporation, “Comparing IP Integration Approaches for FPGA Implementation”.

[6]. The IEEE Standard Hardware Description Language based on the Verilog Hardware
Description Language (IEEE Std 1364-2001).

[7]-Micheal D. Ciletti, “Advanced Digital Design with the Verilog HDL “Prentice Hall,2004.
[8].William Stallings, “Computer Organization and Architecture, Designing for Performance”,
Prentice Hall, 2001.

[9]. A.-S. Jamal, J. Goeders, and S. J. E. Wilton, “An FPGA overlay architecture supporting rapid
implementation of functional changes during on-chip debug,” in 2018 28th International
Conference on Field Programmable Logic and Applications (FPL). IEEE, 2018.

[10]. A.-S. Jamal, “An FPGA overlay architecture supporting software-like compile times during
on-chip debug of high-level synthesis designs,” Ph.D. dissertation, University of British
Columbia, 2018.

[11]. P. Mishra and F.Farahmandi, Post-Silicon Validation and Debug. Cham, Switzerland:
Springer, 2019.

[12]. H. Oh, T. Han, 1. Choi, and S. Kang, “An on-chip error detection method to reduce the post-
silicon debug time,” IEEE Transactions on Computers, vol. 66, no.1, pp . 38 44, Jan 2017.

[13]. H. Oh, I. Choi, and S. Kang, “DRAM-based error detection method to reduce the post-
silicon debug time for multiple identical cores,” IEEE Transactions on Computers, vol. 66, no. 9,
pp. 1504-1517, Sep. 2017.

35



[14]. Y. Cao, H. Palombo, S. Ray, and H. Zheng, “Enhancing observability for post-silicon debug
with on-chip communication monitors,” in 2018 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), July 2018, pp. 602—607.

[15]. D. Holanda Noronha, R. Zhao, J. Goeders, W. Luk, and S. J. E. Wilton, “On-chip fpga
debug instrumentation for machine learning applications,” in Proceedings of the 2019 ACM /
SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2019, pp. 110-115.
[16]. K. Rahmani and P. Mishra, “Feature-based signal selection for post-silicon debug using
machine learning,” IEEE Transactions on Emerging Topics in Computing, pp. 1-1, 2017.

[17]. Https://en.wikipedia.org/wiki/Field-programmable gate array.

[18]. https://home.engineering.iastate.edu/~zzhang/courses/cpre581-f05/resources/modelsim .pdf

[19]. https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/merge dProjects

[quartus/gl quartus welcome.htm.

[20]. https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-

introduction-to-how-it-works.html.

36


https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://home.engineering.iastate.edu/~zzhang/courses/cpre581-f05/resources/modelsim
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/merge%20dProjects%20/quartus/gl_quartus_welcome.htm
https://www.intel.com/content/www/us/en/programmable/quartushelp/13.0/merge%20dProjects%20/quartus/gl_quartus_welcome.htm
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html

